TO THE QUALITY OF GAMMA QUANTUM COLLECTION ON THE ROUTE OF AERIAL SURVEYING FROM AN UNMANNED AIRCRAFT IN THE TERRITORY OF RADIATION CONTAMINATION

Authors

DOI:

https://doi.org/10.32782/apcmj.2024.4.7

Keywords:

UAV, radiation pollution, aerial photography, gamma detector.

Abstract

Abstract. Currently, scientific and technical achievements have significantly expanded the scope of geodetic science in the direction of remote sensing of the Earth to provide reliable geospatial information in various spheres of human activity. The appearance of robotic remote measuring complexes based on unmanned airkrafts (UAV) allows to exclude the direct participation of a person during the execution of various dangerous missions, one of which is reconnaissance and mapping of radiation contaminated territories. At present, helicopter-type UAVs with moving detectors are mainly used to perform this mission. Such detectors have the smallest dimensions and weight compared to other types of sensors. Before the mission, it is necessary to calibrate the detector to bring its measurements to the contamination surface. The purpose of the article is to study the quality of gamma quanta collection by the field of view of a mobile gamma radiation detector on the aerial survey route from a UAV. The following assumptions were adopted for theoretical research. The territory of radiation pollution is a flat area covered with a thin layer of radioactive dust with a uniform distribution of the intensity of gamma radiation. There are local maximums in the form of point sources of gamma radiation on the territory. As a result of theoretical studies, a mathematical apparatus was obtained for determining the sizes and areas of zones that differ in the quality of gamma quanta collection on the route of aerial photography from a UAV of the territory of radiation contamination using a mobile gamma detector and are divided into informative and uninformative zones. One of the indicators of the quality of gamma-quanta collection can be an increase in the ratio of the area of the total informative zone to the area of the gamma-shooting. Calculations of the sizes and areas of the specified zones on the aerial survey route with a length of 1 km, a viewing angle of the gamma detector of 90°, a gamma quanta collection frequency of 1 Hz, a UAV speed of 10 m/s and a height of 30 m are given. The results of the above studies can be useful for planning gamma-shooting routes from UAVs and analyzing the quality of the performed aerial photography.

References

Паспорт спеціальності 05.24.01 – геодезія, фотограмметрія і картографія / Офіційний вебпортал парламенту України. URL: https://zakon.rada.gov.ua/rada/show/v0047330-07#top (дата звернення: 14.06.2024).

Гера О.В. Перспективи використання БПЛА для спостережень за станом об’єктів інфраструктури аеропортів. Airport Planning, Construction and Maintenance Journal. 2024. Вип. 1 (3). С. 30–35. DOI: https://doi.org/10.32782/apcmj.2024.3.4.

Tereshchuk O.I., Kryachok S.D., Belenok V.Iu., Malik T.M., Hebryn-Baidy L.V. Robotic complex for the runway leveling. Device for automated leveling. News of the Academy of Sciences of the Republic of Kazakhstan / Kazakh national research technical university named after K. I. Satpayev. Series of geology and technical sciences. 2021. Vol. 2. Р. 180–188. https://doi.org/10.32014/2021.2518-170X.51.

Sato Yuki, Ozawa Shingo, Terasaka Yuta, Kaburagi Masaaki, Tanifuji Yuta, Kawabata Kuniaki, Nakamura Miyamura Hiroko, Izumi Ryo, Suzuki Toshikazu, Torii Tatsuo. Remote radiation imaging system using a compact gamma-ray imager mounted on a multicopter drone. Journal of Nuclear Science and Technology. 2018. № 55:1, Р. 90–96. DOI: 10.1080/00223131.2017.1383211.

Burtniak V., Zabulonov Yu., Stokolos Ma., Bulavin Le., Krasnoholovet V. Application of a territorial remote radiation monitoring system at the Chornobyl nuclear accident site. J. Appl. Remote Sens. 2018. Vol. 12 (4). Р. 1–13. DOI: 10.1117/1.JRS.12.046007.

Rudolph C., Knoedler B., Heinskill J. Comparable data evaluation method for a radio-nuclear sensor when used onan UAV. Paper presented at the Proceedings of IEEE Sensors. 2020. https://doi.org/10.1109/SENSORS47125.2020.9278612.

Lüley J., Vrban B., Cerba S., Osuský F., Necas, V. Unmanned Radiation Monitoring System. EPJ Web of Conferences 225, 08008 (2020). https://doi.org/10.1051/epjconf/202022508008.

Махньов О.І. Розробка оптимальної конструкції системи візуалізації гамма-випромінювання. Електронні системи та сигнали. 2019. Вип. 2. №. 3. С. 6–10.

Lüley J., Vrban B., Cerba S., Osuský F., Necas, V. Unmanned Radiation Monitoring System. EPJ Web of Conferences 225, 08008 (2020). https://doi.org/10.1051/epjconf/202022508008.

Pavlovsky R., Haefner A., Joshi T.H., Negut V., McManus K., Suzuki E., Barnowski R., Vetter K. 3-D Radiation Mapping in Real-Time with the Localization and Mapping Platform LAMP from Unmanned Aerial

Systems and Man-Portable Configurations. URL: https://www.semanticscholar.org/reader/751a68f57b684c6cf3a1e6de3f6c42a5a321e144 (дата звернення: 22.06. 2024).

Guidelines for Radioelement Mapping Using Gamma Ray Spectrometry Data; TECDOC 1363; International Atomic Energy Agency: Vienna, Austria, 2003. URL: https://www-pub.iaea.org/mtcd/publications/pdf/te_1363_web.pdf (дата звернення 22.06. 2024).

Chierici A., Malizia, A., Di Giovanni D., Ciolini R., d’Errico F. A. High-Performance Gamma Spectrometer for Unmanned Systems Based on Off-the-Shelf Components. Sensors.2022. № 22. P.1 -18. DOI: https:// doi.org/10.3390/s22031078.

Brewer E.T. Autonomous localization of 1/r2 sources using an aerial platform. Master’s thesis, Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 2009. URL: https://www. researchgate.net/publication/279467052_Autonomous_Localization_of_1R2_Sources_Using_an_Aerial_Platform (дата звернення 22.06.2024).

Футбольне поле: розмір та розмітка. URL: https://jutagrass.com.ua/pravila/trebovaniya-k-razmetkei-razmeram-futbolnogo-polya/ (дата звернення 22.06.2024).

Published

2025-01-03